Acta Cryst. (1996). C52, 486–489

Two Isoxazolidines

Satomi Niwayama, Ying You, Kendall N. Houk and Saeed I. Khan*

Department of Chemistry and Biochemistry, The J. D. McCullough X-ray Crystallography Laboratory, University of California, Los Angeles, CA 90024-1569, USA. E-mail: khan@chem.ucla.edu

(Received 22 May 1995; accepted 5 October 1995)

Abstract

The crystal structures of *trans*-phenyl 2-phenyl-1,6dioxa-2-azaspiro[4.4]non-3-yl ketone, $C_{19}H_{19}NO_3$, and $(3\alpha,3a\alpha,6a\alpha)$ -hexahydro-2-phenylfuro[3,2-*d*]isoxazol-3yl phenyl ketone, $C_{18}H_{17}NO_3$, are reported. In both compounds, the isoxazolidine rings adopt envelope conformations in which the O atom is bent out of the approximate plane of the other four ring atoms. Modest to negligible *endo* selectivities were confirmed in 1,3dipolar cycloadditions of benzoylmethyleneaniline *N*oxide with enol ethers.

Comment

The structures of the two title molecules, *trans*-phenyl(2-phenyl-1,6-dioxa-2-azaspiro[4.4]non-3-yl)methanone, (4*a*), and (3α , $3a\alpha$, $6a\alpha$)-(hexahydro-2-phenylfuro-[3,2-*d*]isoxazol-3-yl)phenylmethanone, (5*a*), are shown in Figs. 1 and 2, respectively. The isoxazolidine rings in

both molecules adopt envelope conformations in which the O atoms (O3) are bent out of plane. These structures confirm that both of the major cycloadducts, (4a) and (5a), are formed by *endo* cycloaddition during the 1,3dipolar cycloaddition. The *endo* adducts have the O atom of compound (2) or the ring of compound (3) near the N atom of the planar nitrone in the transition state. The X-ray structures of other related isoxazolidines have been reported by Lizamma, Varghese & Sankararaman (1993) and Bravo, Bruche, Farina, Fronza, Meille & Merli (1993).

Fig. 1. An ORTEP (Johnson, 1965) view of compound (4a) with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

Fig. 2. An *ORTEP* (Johnson, 1965) view of compound (5a) with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

Experimental

Nitrone (1) (benzovlmethyleneaniline N-oxide) was reacted with olefins (2) (tetrahydro-2-methylenefuran) and (3) (2,3dihydrofuran) as shown in the scheme above. Nitrone (1) was prepared according to the literature method of Averas, Cum, Strgno d'Alcontres & Uccella (1972). The products were separated by chromatography on silica gel. Compound (4a) was recrystallized from acetonitrile several times to afford single crystals (m.p. 372-373 K) suitable for X-ray diffraction analysis. Compound (5a) was recrystallized from a mixture of hexane and ethyl acetate. Compounds (4a) and (5a) have been reported previously in the literature (Fisera, Dandarova, Kovac, Gaplovsk'y, Patus & Goljer, 1982), but their stereochemistries were assigned based on the coupling constants of ¹H NMR spectra. The major products from both reactions [*i.e.* compounds (4a) and (5a)] were examined crystallographically to confirm the assigned stereochemistries.

Compound (4a)		C14	-0.0706 (7)	0.3344 (3) -0.0858 (4)	0.057 (4)
Crystal data		C15	-0.1228(8) -0.2806(8)	0.2927 (3) 0.0061 (4) 3) 0.0026 (5)	0.066 (4)
	Cu Ka radiation	C17	-0.3892 (7)	0.3075 ((3) -0.0891(5)	0.075 (5)
$M_r = 309.36$	$\lambda = 1.5418$ Å	C18	-0.3357 (7)	0.3478 (3) -0.1807 (5)	0.076 (5)
Monoclinic	Cell parameters from 22	C19	-0.1795 (7)	0.3611 (3) -0.1799 (4)	0.070 (4)
$P2_1/n$	reflections					
a = 8.678(7) Å	$\theta = 8.2 - 13.2^{\circ}$					
b = 16.19(1) Å	$\mu = 0.664 \text{ mm}^{-1}$		• • •		•	
c = 11.53 (1) Å	T = 298 K	Table	2. Selected	a geometric	c parameters (A, °)	for (4a)
$\beta = 99.00(1)^{\circ}$	Irregular	N1-C14		1.402 (6)	C6C7	1.479 (6)
$V = 1599 (2) \text{ Å}^3$	$0.25 \times 0.20 \times 0.20$ mm	N1-03		1.444 (4)	C7—C8	1.521 (6)
Z = 4	Colorless	01—C7		1.211 (5)	C9C10	1.543 (6)
$D_x = 1.285 \text{ Mg m}^{-3}$		O2—C10		1.408 (5)	C10-C11	1.519 (6)
D_m not measured		02—C13		1.434 (5)	C11—C12	1.480 (7)
		C1-C2		1.383 (6)	C12 = C13 C14 = C15	1.487(7)
Data collection		C1—C6		1.390 (6)	C14-C19	1.391 (6)
Syntex (Crystal Logic)	$R_{i-1} = 0.02$	C2—C3		1.373 (7)	C15-C16	1.381 (7)
diffractometer	$\theta_{\rm max} = 57.5^{\circ}$	C3-C4 C4-C5		1.383 (6)	C10-C17 C17-C18	1.379(6)
$\theta/2\theta$ scans	$h = 0 \rightarrow 9$	C5—C6		1.391 (6)	C18—C19	1.371 (7)
Absorption correction:	$k = 0 \rightarrow 17$	C14	03	113.9 (4)	C10—C9—C8	104.1 (4)
none	$l = -12 \rightarrow 12$	C14-N1		118.9 (4)	O2—C10—O3	110.4 (4)
2452 measured reflections	3 standard reflections	03-NI-	-08	106.7 (4)	02-C10-C9	110.3 (4)
2140 independent reflections	monitored every 97	C10-02		107.4 (3)	02-C10-C1 03-C10-C9	100.7 (4)
1016 observed reflections	reflections	C2—C1–	-C6	121.2 (5)	O3-C10-C11	106.4 (4)
$[I > 3\sigma(I)]$	intensity decay: 0.1%	C3-C2-	-C1	119.4 (5)	C9C10C11	118.8 (5)
		C2-C3- C3-C4-	-C4 -C5	120.5 (5)	C12 - C11 - C10 C11 - C12 - C13	105.4 (5)
Refinement		C4C5	-C6	120.2 (5)	O2-C13-C12	105.6 (4)
	4 0.00 ³ -3	C1C6	-C5	118.6 (4)	C15-C14-C19	118.8 (5)
Refinement on F	$\Delta \rho_{\rm max} = 0.28 \text{ e A}^{-3}$	C1-C0- C5-C6-	-C7	123.1 (4)	CI5-CI4-NI CI9-CI4-NI	123.4 (5)
K = 0.040	$\Delta \rho_{\rm min} = -0.36 \text{ e A}^{\circ}$	01—C7–	-C6	121.0 (5)	C16-C15-C14	119.6 (5)
WR = 0.031 S = 1.457	Extinction correction:	01—C7–	-C8	120.9 (4)	C17—C16—C15	121.7 (5)
3 = 1.437 1016 reflections	Extinction coefficient:	N1-C8-	-C8 -C7	118.1 (4)	C16C17C18 C19C18C17	118.1 (5)
209 parameters	2468 (340)	N1-C8-	-C9	105.4 (4)	C18-C19-C14	120.4 (5)
H atoms were placed in	Atomic scattering factors	C7—C8—	-C9	110.0 (4)		
calculated positions	from International Tables	03—N1-	C8C7	108.6 (4)	C8-C9-C10-O2	- 89.4 (5)
$w = 1/\sigma^2(F_c)$	for X-ray Crystallography	03—N1-		-9.8(5) -103(7)	C8-C9-C10-O3	28.9 (5)
$(\Delta/\sigma)_{max} = 0.002$	(1974, Vol. IV. Tables	03-N1-	-C14C19	175.2 (4)	C13_02_C10_03	90.4 (5)
	2.2B and 2.3.1)	C8N1-	-C14C15	-137.4 (5)	C13-02-C10-C9	-155.3 (4)
	-	C8	-C14C19	48.1 (6)	C13-02-C10-C11	-24.8 (5)
		C8-N1-	-03C10	29.3 (5)	02-C10-C11-C12 03-C10-C11-C12	8.4 (6) - 109.5 (5)
		C14—N1		-103.9 (5)	C9-C10-C11-C12	133.8 (5)
Table 1 Fractional atomic	coordinates and equivalent	N1-03-	-C10O2	81.8 (4)	C10-C11-C12-C13	10.3 (6)
isotropic displacement parameters (A^2) for (A_a)		N1-03-	-C10C11	-162.8(3)	N1-C14-C15-C16	-25.3(6) -174.9(5)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å^2) for (4a)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	у	Z	U_{eq}
0.0877 (6)	0.3450 (2)	-0.0940 (3)	0.063 (3)
0.2585 (5)	0.3493 (2)	-0.2700(3)	0.091 (3)
0.1376 (4)	0.4269 (2)	0.1370 (3)	0.067 (3)
0.1923 (4)	0.3218 (2)	0.0110 (3)	0.069 (3)
0.2090 (5)	0.5703 (3)	-0.2737 (4)	0.062 (4)
0.2278 (6)	0.6383 (3)	-0.3428 (5)	0.075 (4)
0.2665 (7)	0.6267 (4)	-0.4527 (5)	0.089 (5)
0.2900 (8)	0.5483 (4)	-0.4930 (5)	0.101 (5)
0.2727 (7)	0.4803 (3)	-0.4236 (4)	0.083 (5)
0.2307 (6)	0.4906 (3)	-0.3129 (4)	0.061 (4)
0.2144 (6)	0.4162 (3)	-0.2414 (4)	0.062 (4)
0.1410 (6)	0.4260 (3)	-0.1307 (4)	0.060 (4)
0.2649 (6)	0.4552 (3)	-0.0281 (4)	0.077 (4)
0.2478 (6)	0.3965 (3)	0.0701 (4)	0.066 (4)
0.3919 (6)	0.3732 (4)	0.1565 (5)	0.089 (5)
0.3452 (8)	0.3806 (4)	0.2742 (5)	0.103 (5)
0.1730 (7)	0.3917 (3)	0.2523 (4)	0.083 (5)
	x 0.0877 (6) 0.2585 (5) 0.1376 (4) 0.2090 (5) 0.2278 (6) 0.2665 (7) 0.2900 (8) 0.2727 (6) 0.2144 (6) 0.1410 (6) 0.2478 (6) 0.2478 (6) 0.3919 (6) 0.3452 (8) 0.1730 (7)	x y 0.0877 (6) 0.3450 (2) 0.2585 (5) 0.3493 (2) 0.1376 (4) 0.4269 (2) 0.1923 (4) 0.3218 (2) 0.2090 (5) 0.5703 (3) 0.2278 (6) 0.6383 (3) 0.2278 (6) 0.6383 (3) 0.2278 (6) 0.6383 (3) 0.2270 (8) 0.5483 (4) 0.2727 (7) 0.4803 (3) 0.2307 (6) 0.4906 (3) 0.2144 (6) 0.4162 (3) 0.2649 (6) 0.4552 (3) 0.2478 (6) 0.3955 (3) 0.3919 (6) 0.3732 (4) 0.3452 (8) 0.3806 (4) 0.1730 (7) 0.3917 (3)	x y z 0.0877 (6) 0.3450 (2) -0.0940 (3) 0.2585 (5) 0.3493 (2) -0.2700 (3) 0.1376 (4) 0.4269 (2) 0.1370 (3) 0.1923 (4) 0.3218 (2) 0.0110 (3) 0.2090 (5) 0.5703 (3) -0.2737 (4) 0.2278 (6) 0.6383 (3) -0.3428 (5) 0.2665 (7) 0.6267 (4) -0.4527 (5) 0.2900 (8) 0.5483 (4) -0.4930 (5) 0.7277 (7) 0.4803 (3) -0.4236 (4) 0.2307 (6) 0.4906 (3) -0.3129 (4) 0.2144 (6) 0.4162 (3) -0.2414 (4) 0.1410 (6) 0.4260 (3) -0.1307 (4) 0.2649 (6) 0.4552 (3) -0.0281 (4) 0.2478 (6) 0.3965 (3) 0.0701 (4) 0.3919 (6) 0.3732 (4) 0.1565 (5) 0.3452 (8) 0.3806 (4) 0.2742 (5) 0.1730 (7) 0.3917 (3) 0.2523 (4)

Compound (5a) Crystal data $C_{18}H_{17}NO_3$ $M_r = 295.34$ Orthorhombic Pbca a = 10.181 (4) Å b = 28.90(1)Å c = 10.071 (2) Å V = 2963 (2) Å³ *Z* = 8 $D_x = 1.324 \text{ Mg m}^{-3}$ D_m not measured

> Cu $K\alpha$ radiation $\lambda = 1.5418$ Å Cell parameters from 20 reflections $\theta = 9.7 - 17.3^{\circ}$ $\mu = 0.694 \text{ mm}^{-1}$ T = 298 KNeedle 0.15 \times 0.10 \times 0.05 mm Pale yellow

Data collection		C12-02-C11	109.1 (3)	C7C8C9	109.6 (3)
Disalus AEC 50 differentem	$a = 50.00^{\circ}$	C12-03-N1	105.1 (2)	C10C9C12	103.4 (3)
Rigaku AFC-5K diffractom-	$\theta_{\rm max} = 59.99$	C13—N1—C8	123.3 (3)	C10-C9-C8	113.9 (3)
eter	$h = 0 \rightarrow 11$	C13—N1—O3	109.9 (3)	C12-C9-C8	103.3 (3)
$\theta/2\theta$ scans	$k = 0 \rightarrow 32$	C8—N1—O3	104.6 (3)	C11—C10—C9	104.1 (3)
Absorption correction:	$l = 0 \rightarrow 11$	C6-C1-C2	119.4 (4)	O2-C11-C10	104.7 (3)
nono	3 standard reflections	C3C2C1	120.3 (4)	O2C12O3	112.0(3)
	5 standard Tenecholis	C2—C3—C4	120.5 (4)	O2-C12-C9	107.5 (3)
2560 measured reflections	reflections intensity decay: 0.1%	C3-C4C5	119.6 (4)	O3-C12-C9	106.4 (3)
2560 independent reflections		C4C5C6	120.5 (4)	C18—C13—C14	119.9 (3)
1199 observed reflections $[l > 3\sigma(l)]$		C5C6C1	119.6 (4)	C18—C13—N1	120.2 (3)
		C5—C6—C7	117.9 (4)	C14—C13—N1	119.5 (3)
		C1—C6—C7	122.5 (4)	C15-C14-C13	119.3 (4)
		O1—C7—C6	120.8 (4)	C16—C15—C14	120.8 (4)
Patinamant		O1—C7—C8	120.4 (3)	C15—C16—C17	119.3 (4)
Kejinemeni	$(\Delta/\sigma)_{\rm max} = 0.010$	C6—C7—C8	118.7 (3)	C16—C17—C18	120.7 (4)
Refinement on F		N1-C8-C7	115.3 (3)	C13—C18—C17	120.0 (4)
R = 0.048	$\Delta q_{max} = 0.42 \text{ e} \text{ Å}^{-3}$	N1—C8—C9	101.1 (3)		
m = 0.010	$\Delta \rho = 0.12 \text{ or } \Lambda^{-3}$	C11-02-C12-03	-92.1 (4)	N1-C8-C9-C10	-83.6 (4)
WR = 0.039	$\Delta p_{\rm min} = -0.50 \mathrm{e} \mathrm{A}$	C11—O2—C12—C9	24.3 (4)	N1C8C12	27.9 (3)
S = 1.337	Extinction correction: none	N1-03-C12-02	94.2 (3)	C7C8C9C10	154.3 (3)
1199 reflections	Atomic scattering factors	N1-03-C12-C9	-22.9 (3)	C7C8C9C12	-94.2 (4)
199 parameters	from International Tables	C12-O3-N1-C8	42.7 (3)	C8-C9-C10-C11	95.7 (4)
H atoms placed in calculated positions $w = 1/\sigma^2(F_o)$	for X-ray Crystallography (1974, Vol. IV, Tables 2.2B and 2.3.1)	O3—N1—C8—C7	75.1 (3)	C8-C9-C12-O2	-123.3 (3)
		O3—N1—C8—C9	-43.0 (3)	C8—C9—C12—O3	-3.2 (4)
		C12-03-N1-C13	177.1 (3)	C10-C9-C12-O2	-4.2 (4)
		O3—N1—C13—C14	-154.0 (3)	C10C9C12O3	115.8 (3)
		O3—N1—C13—C18	33.2 (4)	C12-C9-C10-C11	-15.7 (4)
		C8-N1-C13-C14	-29.9 (5)	C9C10C11O2	30.2 (4)
		C8-N1-C13-C18	157.3 (4)	C12—O2—C11—C10	- 34.7 (4)
		C13—N1—C8—C7	-51.4 (5)	N1C13C14C15	-172.8(4)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters (\tilde{A}^2) for (5a)

$U_{eq} = (1/3) \Delta_i \Delta_j U_j u_i u_j a_i a_j.$						
	x	у	z	U_{eq}		
01	0.5295 (3)	0.3394 (1)	0.2706 (3)	0.060 (2)		
02	0.5307 (3)	0.5048 (1)	0.3408 (3)	0.057 (2)		
03	0.5079 (2)	0.4381 (1)	0.2114 (2)	0.048 (2)		
NI	0.6422 (3)	0.4231(1)	0.1841 (3)	0.037 (2)		
Cl	0.8181 (4)	0.3275 (1)	0.4736 (4)	0.045 (3)		
C2	0.8690 (4)	0.2983 (2)	0.5710(4)	0.057 (3)		
C3	0.7916 (5)	0.2648 (1)	0.6273 (5)	0.065 (3)		
C4	0.6627 (5)	0.2596 (1)	0.5887 (5)	0.066 (3)		
C5	0.6110 (4)	0.2886(1)	0.4926 (4)	0.055 (3)		
C6	0.6881 (4)	0.3226(1)	0.4347 (4)	0.039 (2)		
C7	0.6271 (4)	0.3523 (1)	0.3309 (4)	0.039 (2)		
C8	0.6849 (4)	0.4009(1)	0.3058 (3)	0.036 (2)		
C9	0.6319 (4)	0.4350(1)	0.4109 (3)	0.041 (2)		
C10	0.7228 (4)	0.4767 (1)	0.4369 (4)	0.054 (3)		
C11	0.6683 (5)	0.5144 (2)	0.3490 (4)	0.060 (3)		
C12	0.5118 (4)	0.4569(1)	0.3419 (4)	0.043 (2)		
C13	0.6483 (4)	0.4016 (1)	0.0588 (3)	0.034 (2)		
C14	0.7464 (4)	0.3690(1)	0.0336 (4)	0.045 (2)		
C15	0.7614 (5)	0.3517(1)	-0.0941 (4)	0.058 (3)		
C16	0.6801 (5)	0.3661 (2)	-0.1958 (4)	0.061 (3)		
C17	0.5836 (5)	0.3985 (2)	-0.1697 (4)	0.057 (3)		
C18	0.5678 (4)	0.4164 (1)	-0.0432 (4)	0.046 (3)		

 $U_{--} = (1/3) \sum \sum U_{--} a^* a \cdot a \cdot$

Data collection: COLLECT UCLA (UCLA Crystallographic package, 1984) for (4a); MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988) for (5a). Cell refinement: LEAST UCLA for (4a); LSQUARES MSC/AFC Diffractometer Control Software for (5a). Data reduction: REDUCE UCLA for (4a); PROCESS in TEXSAN (Molecular Structure Corporation, 1989) for (5a). For both compounds, program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: OR-FLS UCLA; molecular graphics: ORTEP (Johnson, 1965); software used to prepare material for publication: ORFFE (Busing, Martin & Levy, 1964), UCLA.

-169.5(3)

N1-C13-C18-C17

173.4 (4)

We are grateful to the National Institute of Health for financial support of this research.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: SX1007). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 4. Selected geometric parameters $(Å, \circ)$ for (5a)

01—C7	1.223 (4)	C6C7	1.488 (5)
02—C12	1.397 (4)	C7—C8	1.543 (5)
O2C11	1.431 (5)	C8C9	1.543 (5)
O3-C12	1.423 (4)	C9-C10	1.542 (5)
O3—N1	1.460 (4)	C9-C12	1.542 (5)
N1C13	1.408 (4)	C10-C11	1.509 (6)
N1C8	1.450 (4)	C13-C18	1.382 (5)
C1C6	1.388 (5)	C13-C14	1.396 (5)
C1C2	1.394 (5)	C14—C15	1.388 (5)
C2C3	1.371 (6)	C15-C16	1.381 (6)
C3—C4	1.377 (6)	C16—C17	1.382 (6)
C4—C5	1.384 (6)	C17C18	1.384 (5)
C5C6	1.386 (5)		

References

C13----N1---C8----C9

- Averas, M. C., Cum, G., Strgno d'Alcontres, G. & Uccella, N. J. (1972), J. Chem. Soc. Perkin Trans. 1, pp. 222-225.
- Bravo, P., Bruche, L., Farina, A., Fronza, G., Meille, S. V. & Merli, A. (1993). Tetrahedron Asymmetry, 4, 2131-2134.
- Busing, W. R., Martin, K. O. & Levy, H. A. (1964). ORFFE. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee, USA. Fisera, T., Dandarova, M., Kovac, J., Gaplovsk'y, A., Patus, J. &
- Goljer, I. (1982). Collect. Czech. Chem. Commun. pp. 523-534.
- Johnson C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.

488

Larson, A. C. (1967). Acta Cryst. 23, 664-665.

- Lizamma, M., Varghese, B. & Sankararaman, S. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2399–2404.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- UCLA Crystallographic Package (1984). University of California, Los Angeles, USA.